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ABSTRACT
In this paper we will prove a common fixed point theorem using contraction and rational inequality in Hilbert Space,
So the purpose of this paper is establish the generalisation of contraction in Hilbert Space.
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I. INTRODUCTION
In recent years some fixed points of various type of contraction mapping in Hilbert space and Banach spaces were
obtained, among others by Browder [1], Browder and Petryshyn[2],Hicks ,Huffman[3],Junck[4], Mujahid Abbas,
Miko Jovanovic , Stojan Radenovic , Aleksandra Sretenovic Suzana Simic[5] and Yadav, Hema, Sayyed, S.A. and
Badshah, V.H[10].

II. PRELIMINARIES
2.1 NORM : A norm on X is a real-valued function ||.|| : XR defined on X such that for any x, y  X and for
all K

(a) ||x|| = 0 if and only if x = 0
(b) ||x+y||  ||x|| + ||y||
(c) ||x|| = || ||x||

2.2 NORMED LINEAR SPACE : It is a pair (X, ||.||) consisting of a linear space X and a norm ||.||. We shall
abbreviate normed linear space as nls.

2.3 CAUCHY SEQUENCE : A Sequence {xn} in a normed linear space X is a Cauchy
sequence if for any given  > 0, there exist n0 N such that ||xm - xn || <  for m, n  n0 .

2.4 CONVERGENCE CONDITION IN NLS : A sequence {xn} in a nls X is said to be Convergent to x  X if
for any given  > 0, n0 N such that ||xn - x|| <  for n  n0

2.5 COMPLETENESS : A nls X is said to be complete if for every Cauchy Sequence in X converges to an element
of X.

2.6 BANACH SPACE : A Banach Space (X, ||.||) is a complete nls.

2.7 INNER PRODUCT SPACE : Let X be a linear space over the scalar field C of complex numbers. An inner
product on X is a function (. , .) : XxX  C which satisfies the following conditions

(a) (x, y) = for x, y  X

(b) (x + y, z) =  (x, z) +  (y, z) for ,   C, x, y, z  X

(c) (x, x)  0 ; x x) = 0 iff x = 0

2.8 LAW OF PARALLELOGRAM:If x and y are any two elements of an inner

product space X then ||x + y||2 + ||x-y||2 = 2||x||2 + 2||y||2

or ||x + y||2 ≤ 2||x||2 + 2||y||2
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2.9 HILBERT SPACE : An infinite dimensional inner product space which is

complete for the norm induced by the inner product is called Hilbert Space.

III. MATERIAL ANDMETHODS
3.1 THEOREM : If T be the self map satisfying following then we have

||Tx-Ty||2 ≤ k min [||y–Ty||2,
2
1

(||x–Ty||2+||y–Tx||2),
4
1

(||x–Tx||2+||y–Ty||2),

2

22

||y-x ||1+
}||Tx-x |{1||Ty-y|| 

, 2

22

||Ty-y||1+
}||Ty -x ||{1 ||Tx-x || T

,

2

22

||y-x ||1+
}||Tx -x ||{1 ||Ty -x || 

, 2

22

||Ty-Tx ||1+
} ||Ty -y||{1  ||Tx -y || 

]

Then T has fixed point when 0≤ k <1

Suppose x=x2n , y=x2n+1 and Tx2n = Tx2n+1 then we have

||x2n+1-x2n+2||2≤k min [||x2n+1–x2n+2||2,
2
1

(||x2n–x2n+2||2+||x2n+1–x2n+1||2),

4
1

(||x2n–x2n+1||2+||x2n+1–x2n+2||2),||x2n+1–x2n+2||2, ||x2n–x2n+2||2 ]

||x2n+1-x2n+2||2 ≤ k min [||x2n+1–x2n+2||2,
2
1

(2||x2n–x2n+1||2+2||x2n+1–x2n+2||2),

4
1

(||x2n–x2n+1||2+||x2n+1–x2n+2||2), ||x2n+1–x2n+2||2,2 ||x2n–x2n+1||2+2||x2n+1–x2n+2||2]

≤ k ||x2n – x2n+1||2 if 0≤ k <1

≤ k2 ||x2n-1 – x2n||2

- - - - - - - - - - - -

≤ kn ||xn – xn+1||2

 0 as n  

IV. RESULT AND DISCUSSION
Above shows that {Txn} is a Cauchy Sequence in H as H is a Hilbert Space and T is self map then Txn converges
to some point p.

V. CONCLUSION
In this paper, we have proved the existence of a fixed point of T and contraction of T in a Hilbert Space which is
unique.
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