GLOBAL **J**OURNAL OF **E**NGINEERING **S**CIENCE AND **R**ESEARCHES

COMMON FIXED POINTS IN HILBERT SPACE

Seema Sinha^{*1}, Premlata Verma² and G.S.Sao³

*1,3Dept.of Mathematics, Government ERR PG Science College, Bilaspur(C.G.)

² Dept.of Mathematics, Government Bilasa Girls PG College, Bilaspur(C.G.)

ABSTRACT

In this paper we will prove a common fixed point theorem using contraction and rational inequality in Hilbert Space, So the purpose of this paper is establish the generalisation of contraction in Hilbert Space.

Keywords- Hilbert Space, Common Fixed Point, Parallelogram Law.

I. INTRODUCTION

In recent years some fixed points of various type of contraction mapping in Hilbert space and Banach spaces were obtained, among others by Browder [1], Browder and Petryshyn[2],Hicks ,Huffman[3],Junck[4], Mujahid Abbas, Miko Jovanovic , Stojan Radenovic , Aleksandra Sretenovic Suzana Simic[5] and Yadav, Hema, Sayyed, S.A. and Badshah, V.H[10].

II. PRELIMINARIES

2.1 NORM : A norm on X is a real-valued function $\|.\|$: X \rightarrow R defined on X such that for any x, y \in X and for all $\lambda \in K$

- (a) ||x|| = 0 if and only if x = 0
- (b) $||x+y|| \le ||x|| + ||y||$
- (c) $\|\lambda x\| = |\lambda| \|x\|$
- **2.2** NORMED LINEAR SPACE : It is a pair $(X, \|.\|)$ consisting of a linear space X and a norm $\|.\|$. We shall abbreviate normed linear space as nls.

2.3 CAUCHY SEQUENCE : A Sequence $\{x_n\}$ in a normed linear space X is a Cauchy sequence if for any given $\varepsilon > 0$, there exist $n_0 \in N$ such that $||x_m - x_n|| < \varepsilon$ for $m, n \ge n_0$.

2.4 CONVERGENCE CONDITION IN NLS: A sequence $\{x_n\}$ in a nls X is said to be Convergent to $x \in X$ if for any given $\epsilon > 0, \exists n_0 \in N$ such that $||x_n - x|| < \epsilon$ for $n \ge n_0$

2.5 COMPLETENESS : A nls X is said to be complete if for every Cauchy Sequence in X converges to an element of X.

2.6 BANACH SPACE : A Banach Space $(X, \|.\|)$ is a complete nls.

2.7 INNER PRODUCT SPACE : Let X be a linear space over the scalar field C of complex numbers. An inner product on X is a function (.,.) : XxX \rightarrow C which satisfies the following conditions

(a)
$$(x, y) = (\overline{y, x})$$
 for $x, y \in X$

(b)
$$(\lambda x + \mu y, z) = \lambda (x, z) + \mu (y, z)$$
 for $\lambda, \mu \in C, x, y, z \in X$

- (c) $(x, x) \ge 0; x x) = 0$ iff x = 0
- 2.8 LAW OF PARALLELOGRAM: If x and y are any two elements of an inner

or $||\mathbf{x} + \mathbf{y}||^2 \le 2||\mathbf{x}||^2 + 2||\mathbf{y}||^2$

product space X then $||x + y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$

(C)Global Journal Of Engineering Science And Researches

2.9 HILBERT SPACE : An infinite dimensional inner product space which is

complete for the norm induced by the inner product is called Hilbert Space.

III. MATERIAL AND METHODS

3.1 THEOREM : If T be the self map satisfying following then we have

$$\begin{split} \|Tx - Ty\|^{2} &\leq k \min \left[\|y - Ty\|^{2}, \frac{1}{2} \left(\|x - Ty\|^{2} + \|y - Tx\|^{2} \right), \frac{1}{4} \left(\|x - Tx\|^{2} + \|y - Ty\|^{2} \right), \\ & \frac{\|y - Ty\|^{2} \left\{ 1 + \|x - Tx\|^{2} \right\}}{1 + \|x - y\|^{2}}, \frac{\|x - Tx\|^{2} \left\{ 1 + \|Tx - Ty\|^{2} \right\}}{1 + \|y - Ty\|^{2}}, \\ & \frac{\|x - Ty\|^{2} \left\{ 1 + \|x - Tx\|^{2} \right\}}{1 + \|x - y\|^{2}}, \frac{\|y - Tx\|^{2} \left\{ 1 + \|y - Ty\|^{2} \right\}}{1 + \|Tx - Ty\|^{2}} \right] \end{split}$$

Then T has fixed point when $0 \le k \le 1$

Suppose $x=x_{2n}$, $y=x_{2n+1}$ and $Tx_{2n}=Tx_{2n+1}$ then we have

$$||\mathbf{x}_{2n+1}-\mathbf{x}_{2n+2}||^{2} \leq k \min [||\mathbf{x}_{2n+1}-\mathbf{x}_{2n+2}||^{2}, \frac{1}{2} (||\mathbf{x}_{2n}-\mathbf{x}_{2n+2}||^{2}+||\mathbf{x}_{2n+1}-\mathbf{x}_{2n+1}||^{2}),$$

$$\frac{1}{4} \left(\|x_{2n} - x_{2n+1}\|^2 + \|x_{2n+1} - x_{2n+2}\|^2 \right), \|x_{2n+1} - x_{2n+2}\|^2, \|x_{2n} - x_{2n+2}\|^2 \right]$$

$$\|x_{2n+1}-x_{2n+2}\|^2 \leq k \min \left[\|x_{2n+1}-x_{2n+2}\|^2, \frac{1}{2} (2\|x_{2n}-x_{2n+1}\|^2+2\|x_{2n+1}-x_{2n+2}\|^2), \right]$$

IV. RESULT AND DISCUSSION

Above shows that $\{Tx_n\}$ is a Cauchy Sequence in H as H is a Hilbert Space and T is self map then Tx_n converges to some point p.

V. CONCLUSION

In this paper, we have proved the existence of a fixed point of T and contraction of T in a Hilbert Space which is unique.

VI. ACKNOWLEDGEMENTS

The authors are thankful to the reviewers for their valuable suggestions to enhance the quality of our article and Journal also.

REFERENCES

- 1. Browder, F.E. : Fixed point theorems for nonlinear semi contractive mappings in Banach space, Arch, Rat, Mech, Anal, 21, 259-269, (1965-66)
- 2. Browder, F.E. and Petryshyn W.V. : Contraction of fixed points of nonlinear mappings in Hilbert space ,J.Math. Anl. Appl.20, 197-228, (1967).
- 3. Hichs, T.L. and Huffman, Ed.W. : Fixed point theorems of generalized Hilbert space, J.Math Anal, Appl, 64 (1978).
- 4. Jungck G. "Commuting mappings and fixed points." Amer. Math. Monthly 83(1976) 261-263.
- 5. Mujahid Abbas, Miko Jovanovic, Stojan Radenovic, Aleksandra Sretenovic and SuzanaSimic: Abstract metric spaces and approximating fixed points of a Pair of contractive type mappings, Journal of Computational Analysis and Applications, vol. 13(2) (2011), 243-253.
- 6. Sao, G.S.: Common fixed point theorem for compability on Hilber t space, Applied Sci. Periodical vol.9(1), Feb.07, p.27-29
- 7. Sao, G.S. and Gupta S.N.; Common fixed point theorem in Hilbert space for rational expression. Impact Jour. of Sci. and Tech. Vol 4 2010, p. 39-41.
- 8. Sao, G.S. and Sharma Aradhana : Generalisation of Common fixed point Theorems of Naimpally and Singh in Hilbert Space, Acta Sciencia India 2008 34(4) p. 1733-34.
- 9. Sharma, Aradhana and Sao, G.S. : Common Fixed Point in Banach Space International Journal of Modern Science and Engineering Technology Vol-2 Issue-8 2015 pp. 54-59.
- 10. Yadav, Hema, Sayyed, S.A. and Badshah, V.H:, A note on common fixed point theorem in Hilbert space, Material Science Research India, vol.7 (2)(2010), 515-518.

